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Abstract. The zero-field parallel and perpendimlar susceptibility and the zero-field 
specific heat of &he quantum easy-plane S = 1 Heisenberg spin chains are calculated 
numerically and applied to T M N B ,  TMNC and CrNiFs. New values of the model pa- 
rameters are estimated from fitting procedures. As to CsNiF3, the in-plane specific 
heat, the field-dependent magnetization and the spin-wave dispersion are also evalu- 
ated for a given choice of the microscopic parameters (J/kB = 20.5 K, A / J  = 0.425) 
and compared with measured quantities. A n  overall agreement with experiment i s  
revealed. 

1. Introduction 

Since the interpretation of solitons as quasi-particles [I] and the recognition of their 
role in the understanding of the thermodynamic properlies of magnetic chains as well 
as the foregoing observation [2] of the central peak in the neutron scattering experiment 
on CsNiF,, the quasi-onedimensional magnetic systems have attracted a great deal 
of interest [3]. I t  has been shown under certain approximations [4] that  the equation 
of motion of the spin chain described by the easy-plane Heisenberg model with the 
in-plane field can be mapped onto a classical sine-Gordon (sG) equation yielding linear 
and non-linear excitations. 

A considerable amount of experimenta [3] on quasi-one-dimensional magnetic sys- 
tems with the easy-plane anisotropy has  been performed and interpreted qualitatively 
by recourse to the SG model. However, some quantitative disagreement found for the 
specific heat and neutron scattering data [5-71, unknown effects of different approx- 
imations underlying the SG model, as well as controversies about the importance of 
the out-of-plane fluctuations versus the SG model quantization, have led to numerical 
simulations. In the quantum version they are based on the Suzuki-Trotter formalism 
[SI leading to the quantum Monte Carlo (QMC) [9-111 or to the quantum transfer 
matrix (QTM) techniques [ l o ,  121. The finite-size chain calculations have also been 
widely applied [11,13-161. On the classical level, the simulations have been performed 
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in the framework of the corresponding transfer matrix [17], Monte Carlo, or equation- 
of-motion technique [lS]. 

Our results reported here are obtained within the finite-size chain method and 
refer to the following soliton-bearing systems: (CH,),NNiBr, (TMNB), (CH,),NNiCI, 
(TMNC) and CsNiF, which can be described by the Hamiltonian 
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wherc J denotes the ferromagnetic coupling constant, A,  the anisotropy parameter 
and B ,  the external magnetic field which can be applied in the chain direction (a = z )  
or in the easy plane (a = E). 

In the previous paper 1191 (denoted hereafter as I) we were concerned with the 
static properties of CsNiF, which is considered a good quasi-one-dimensional com- 
pound with T, = 2.7 K and very weak interchain interactions. Assuming the mom- 
monly used parameters [20], 

J / k B  = 23.6 I< .4/kB = 9.0 I< g = 2.4 (2) 

we considered in 1 longer ( N  up to 7 sites) spin chains than before 1211 and we found 
an error in the S = 1 part of [21]. I t  turned out, however, that the excess specific heat 
maxima were not much improved (figures I and 2 in I ) .  Somewhat better estimates 
of the excess specific heat AC(T, B )  = C(T, B )  - C(T, 0) were also reported in I ,  but 
the anisotropy parameter w a s  modified (A/kB = 6 K )  after [22]. To compare our 
predictions with the magnetization measurements, we adopted in I the value g = 2.08 
reported in [23]. 

The aim of the present paper is a more coherent description of the compounds 
in question. First we fix theoretically the microscopic parameters in (1) from some 
fitting procedures and then we calculate a variety of static characteristics. 

2. Fitting procedure 

The coefficient g@,B/J of the third term in (1) amounts to 0.07 for B = 1 T and 
remains small in the experimental region of the applied fields so that  we fit the pa- 
rameters of the model Hamiltonian ( I ) ,  searching for an overall agreement bctween 
our numerical estimates and the corresponding zero-field experimental data. To sim- 
plify the fit, the g-factors are kept constant and assume the values fixed in [24] from 
the resonance experiments. As to CsNiF,, the g-factors are anisotropic and have the 
following values 

gI1 = 2.23 g1 = 2.28 (3) 

where 11 and I stand for the field directions with respect to the chain axis. The values 
in (3)  fulfil 2.08 < gI1, gL < 2.4, giving a good compromise between g = 2.08 [23] and 
g = 2.4 [20]. 

Our theoretical estimates have been found for finite chains with size up to 
N,,, = 8 and up to N,,, = 7 for the field applied in the L and 2: directions, respec- 
tively. After having diagonalized the matrix representation of ( l ) ,  the corresponding 
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thermodynamic quantities have been evaluated in the standard way [15,19,21] for 
2 < N < Nmax and the linear extrapolations in 1 / N  have been performed. The error 
bars and the uncertainties have been estimated taking into account the variations of 
the extrapolated values with respect to the number of points as well as new parabolic 
extrapolations. 

Extending the length of chains with respect to those in 119,241, we have calculated 
the zero-field specific heat C, the parallel susceptibility xl and the perpendicular sus- 

data [24,25]. The model parameters chosen here yield the best overall fit. Due to 
the procedure adopted, our parameters should be close to those found in [24]. We 
emphasize, however, that  xL plays an active role and was previously neglected 1241 
because of the lower symmetry of (1 )  for the in-plane field. 

ceptibility xL, and we have compared them with the avai I able zero-field experimental 

3. Results and discussion 

In figures 1 and 2 xII and xL are presented for TMNB. The experimental data [24] are 
shown by full squares and the theoretical estimates by full curves. Note that for all the 
compounds considered bere, the g factors are unchanged and assume values assigned 
in 1241, whereas the parameters J and A / J  are subject to modifications according 
to the fitting procedure. The parameters yielding the best overall fit for TMMB are: 
J / k B  = 10.0 i 0.5 K, A / J  = 0.35 f 0.02. 

TEMPERATURE 110 

Figure 1. Fit of the rurceptibilily parallel to lhe chains X I ,  for TMNB. The full 
squares represent the experimental data and the curve represents the theoretical 
estimates. 

Our results for TMNC are displayed in figures 3 and 4 for C and xII, respectively, 
and lead to the following interaction parameters: J / P ,  = 3.3k0.2 K, A / J  = l.l*O.l. 
The curves for xI are not presented explicitly, as the agreement with experiment is 
even better than that shown in  figure 2. Some systematic deviations occur only in the 
low-temperature region in the close vicinity of the 3D long-range-order critical point. 
For TMNC the experimental results have been fitted not only for xll and xI, but also 
for C. Again, gI1 and gI are not the adjustable parameters so that the fit is carried 
out varying J and A / J .  
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Figure 2. Fit of the susceptibility perpendicular to the chains X I  for T M N B .  The 
experimental and theoretical data are represented by the full squaws and the curve, 
respectively. 

Fi&ure 3. Fit of the theoretical curve to the %er.=-field experimental specific heat 
( f d  squarer) Tor T M N C ,  

In view of an interest in CsNiF, and some discrepancies which have prevailed 
between theory and experiment (1191 and references therein), we find i t  important 
to determine new parameters of (1) for CsNiF, within our procedure and then to 
calculate the corresponding field-dependent characteristics. Unfortunately, reliable 
zero-field specific heat data are not available for CsNiF, so that  we are confined to 
the zero-field susceptibility data [24] only. The latter, performed on the single crystal, 
are reported together witli our theoretical predictions in figures 5 and 6 .  The g values 
are given in (3) and the best fit is reached for 

J/kB = 20.5hl .O Ii .4/J = 0 . 4 2 5 i 0 . 1 5 .  (4) 

Due to systematic underestimations of xL observed in figure 6 ,  we were prompted 
to search for a somewhat modified set of parameters, relaxing our coadition that g 
should be kept constant. The result for ,yI, is presented in figure 7 by the full curve. 
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TEMPIRATURE (11 

Figure 4. Fit of with theory for T M N C  

*-*+ 1. 
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TEMPERATURE IK) 

Figure 5. Fit of X I I  with theory for CrNiFJ and parameters (3)-(4) 

This fit is found for the alternat.ive set of the parameters 

(5) J/kB = 26.5 K gll = 2.07 

having assumed ad  hoc that A / J  = 0.3. The fit is nearly as good as that in figure 5.  
It turns out,  however, that  the values of the paramel.ers J and g given by (5) do 
not improve the low-temperature behaviour of xL. Though the parameter g,, = 2.07 
is close to the corresponding value inferred from the saturation magnetization mea- 
surements [23], there is also experimental evidence supporting the value g = 2.4 I201 
found from the low-temperature powder susceptibility measurements. The result in 
(5) demonstrates the ambiguity in the fitting procedure. It is interesting that some 
very recent neutron scattering experiments [26] have confirmed the previous findings 
[27] for the parameters 

(6) J/kB = 23.0 f 0.1 K A / k ,  = 8.9 i 0.2 K 

which almost coincide with those in (2) 
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TEMPERATURE (10 

Figure 6. Fit of 
error bars. 

with theory for CsNiF3. Our estimales &re supplemented by 

0 u., I * . I  8 -',d .G 
0 2 0  10 60 

TEMPERATURE (K) 

Figure 7. Fit of q with theory for CsNiF3. The full curve rcpnesent predictions for 
the parameters given by ( 5 )  and the broken curve. for the parametas given by (6). 

Before discussing the different predictions (4)-(6) for CsNiF, microscopic param- 
eters, we present our results for the static field-dependent properties which compare 
rather well with the corresponding measurements. We consider the microscopic pa- 
rameters (3)-(4) in our calculations of the remaining field-dependent characteristics 
of CsNiF,. 

We have found in the excess specific heat data AC(T, B )  well-defined maxima for 
any given temperature. The heights of the peaks AC,(T) and the peak positions 
B,(T) are reported in figures 8 and 9, respectively. The experimental data [6] are 
denoted by full and open circles, the QMC predictions by open triangles, and our esti- 
mates by crosses. Our present results are superior to those found previously [lo,  19,211. 

We note that the g value has  no eKect on AC,(T), and according to an analysis 
performed in  1, the uncertainties of our extrapolations are of the order of 10% at  
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Figure 8. The excess specific heat maxi- AC,(T) as a function of temperature. 
Experimental daia are reported by the circler (solid for the new disk-shaped sample 
and open for the older sample). The open triangles represent the QMC predictions. 
Our estimates are shown by crosses. 
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Figure 9. Peak positions Bm(T) of the excess specific heat a5 a function of the 
square of temperature. The solid and open circler represent the experimental data 
for the new disk-shaped sample and the older sample. respectively. The open triangles 
represent the QMC predictions, whereas our estimates are shown by m s s e 5 .  

lower temperatures and they are even smaller a t  higher temperatures. With respect 
to the peak position, the heat capacity measurements [6] are confined to a region of 
the (B,T) plane that is relatively close to TN(0). As the interchain interactions are 
antiferromagnetic, they tend to decrease the eflect of an applied magnetic field. The 
magnetic phase diagram determined in 1291 indicates that these interactions, expressed 
in terms of a field, amount to 2.1 kG. This agrees very nicely with the shift between the 
calculated and experimental results in figure 9. Some unexpected decrease of the shift 
appears for T 6 5 K,  where the limit of our extrapolation procedure is reached, and 
they are less reliable. Within this mean-field-like approach, the interchain interactions 
will hardly affect the comparison between theory and experiment presented in figure 8, 
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Figure 10. The in-plane magnetic moment versus the field at a given temperature. 
The symbols represent tbe experimental observations. The theoretic4 remlis are 
plotted by the curves. 

since in that  case the magnitude of the field is irrelevant. 
The  comparison with the magnetization iiieasurements is shown in  figures 10 

and 11. The experimental magnetic moment isotherms 119,281 are reported by the 
symbols and our estimates by the full  cu rves .  Our g values (3)  are higher than g = 2.08 
quoted in [23] so that we are left with the pat% of the ( B , T )  plane outside the satura- 
tion region. The rneasurements were performed oil two different samples [19,28]. The 
in-plane field was applied on the saiiiple of in = 14.5 mg whereas the field parallel 
to the chain axis was applied on the sample of in = 108.3 mg. We find the overall 
agreement wit~h experiment both for the iii-plane and for the out-of-plane magnetic 
moment. I t  is likely that our magnetization profiles in figure 10 are not affected by 
the interchain interactions even in the low-field limit, as the temperatures considered 
are high enough (T  10 K ) .  

Bm 

Figure 11. Magnetic moment versus the magnetic field applied along the chain 
axis. The symbols represent the experimental data, whereas the theoretical results 
are plotted by the C U Y ~ S .  



Siatic p r o p e r t i e s  of S = 1 chains 2923 

In the remaining part of this section some implications of the different parameter 
choices (2)-(6) are discussed. As far as susceptibility is concerned, w e  have mentioned 
that  our results (4) and (5)  yield similar fit, although the latter slightly underestimate 
the experimental findings at  higher temperatures. The susceptibility fit is very sen- 
sitive to the g value in the entire temperature region (x - g'), and is also sensitive 
to other parameters a t  lower temperatures. At higher temperatures, however, the 
uncertainties of our extrapolations are lower than the experimental errors and even 
small systematic deviations from the experimental data present a strong argument 
against the corresponding parameters. On that  basis Dupas and Renard [24] found 
the values close to (4) superior to (2) and (6). We have confirmed their conclusions. 
In figure 7 the susceptibility xII for the parameters (6) and g = 2.4 is depicted by the 
broken curve. It strongly disagrees with the experimental results represented by the 
squares. Although the agreement can be improved if g is diminished, some systematic 
deviations prevail a t  higher temperatures. 

The set ( J , A , g ) ,  found from the zero-field xII and ,yL data available for CsNiF,, 
is somewhat ambiguous. The solution (4) was found for fixed values (3) of g,  whereas 
solution (5) was for the fixed value A/J = 0.3. The zero-field specific heat C does 
not depend on g and the corresponding experimental data could help resolve the 
ambiguity. For that reason in figure 12 the zero-field specific heat curves are plotted 
for parameters (4)-(6). The results show that measurements of C with the accuracy 
of the order of 1-3% are required. From figure 12 we  see that set (5) gives very flat 
temperature dependence above the maximum a t  10 K. Our preferable set (4) leads to 
the maximum of C a t  9 K and the temperature behaviour which could be distinguished 
from that for set (6), especially a t  low temperatures. In table 1 we report explicitly 
the variation of the C maxima wi th  the number of points taken into account in the 
extrapolations. The maxima are very stable and we estimate the uncertaities for those 
temperatures at 0.1-0.3%, well below the required accuracy of the experimental data.  
Similar zero-field specific heat measurements performed on the spin-4 compound CHAB 
[12,14,16] turned out to be very helpful in matching the microscopic parameters. 

Table 1. Distribution of the crtlapolated maxima of the zer-field specific heat 
versus the number of poiiits. 

A = 0 425 A = 0.387 A = 0 300 
n T,,, = 9.0 T,,,, = 10.0 T,,, = 10.0 

2 2.98332 2,90610 2.68829 
3 2.98823 2.90595 2.68326 
4 2.98837 2.90637 2.68795 
5 2.98259 2.89961 2.67432 
6 2.98360 2.89892 2.68837 

The most direct method of fixing the microscopic parameters J and A is the 
neutron scattering experiment. The values quoted in (2 )  and (6) were determined, 
measuring the spin-wave dipersion relation. We emphasize, however, that  our one- 
dimensional system (1) does not display the long-range order and the spin-wave the- 
ory is not as well established as for the conventional ferromagnets. In particular, the 
standard Holstein-Primakoff transformation is not applicable here and violates the 
Goldstone theorem which holds for the easy-plane anisotropic model (1). Instead, 
the Villain transformation [SO] for the classical counterpart of (1) w a s  applied and a 
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Figure 12. The theorerical zero-field specific heat. The predictions for the set (4) 
are plotted by the lull curve, and those for the set (5)  and (6) by the broken and 
dotted curves, respectively. 

matching matrix element ( M M E )  method [31] w a s  devised for the quantum Hamilto- 
nian ( 1 ) .  The former [ZO] led to the parameters (2) and the latter [26.27] led to the 
parameters (6). The M M E  approach pertains t o  3D magnets and may be regarded as 
an expansion in l / zS .  where z is the coordination number and S is the spin value. 
In the particular case of ( l ) ,  the expansion parameter d = A/(4SJ + g p e B )  N 0.2 
remains small for the linear system and the Goldstone theorem is fulfilled up to the 
second order in d. Thus, the microscopic parameters J and A are fixed in the neutron 
scattering experiment, fitting the observed energy spectra to the theoretical disper- 
sion relation E, which is obtained perturbatively and gives the correct limit Eq -+ 0 
as q -+ 0 up to the second order ill d. Moreover. the experiments are performed 
at  finite temperatures (T = 4 . 2  I<) whereas the zero-temperature relation is refcrred 
to. At k,T/J = 0.2 the reliable numerical simulations 1181 show for the XY model 
about 5-8% reduction of the dispersion relation with respect to the zero-temperature 
predictions (figure 9 in  [18]). Similar estimates (8-10%) have been found 1321 for the 
dispersion of the classical counterpart of ( I ) .  In  conclusion, parameters (2) and (6) 
are subject to some uncertainties, too. 

Finally, we plot the corresponding spin-wave dispersions for the parameters (4) and 
(5) in figure 13, and the field dependence of the energy gap at the center of the Brillouin 
zone q = 0 in figure 14 .  The symbols denote the experimental [27] observations 
whereas the full and the broken curves denote the results for the parameters (4) and 
(5) ,  respectively. For the dispersion we see deviations of the order of 10% in both cases. 
In  the latter case they are more pronounced: for small q we find underestimations and 
for large q we find overestimations. As far as the y = 0 energy gap is concerned, our 
parameters (4) yield (figure 14) quantitative agreement with the FMR experiment (the 
data after figure 5(a) in [27]). 

4. Conclusions 

We have successfully applied the finite-size numerical approacli to the title compounds 
TMNB, TMNC and CsNiF,. We have applied the fit to the zero-field susceptibility and 
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Figure 13. Spin-wave s p r ~ t r a .  The experimental dispersion of the magnans in 
CsNiF3 at 4.2 I< a1 5 = 4.1 1' is shown by the symbols. The theoretical zero. 
temperature estimates for the parameters (4) and (5) are given by the full and broken 
C U r M E ,  rerpec ti vely. 

B(T) 

Figure 14. The energy gap E& Y O ~ S S U S  magnetic field. The notation as in f i g u ~  13. 

the zero-field specific heat ( i f  available) data to fix the microscopic parameters. We 
have considered longer chains and the perpendicular susceptibility xL,  too. 

Particular attention has been focused on CsNiF, to explain coherently its static 
properties by recourse to the model (1) with parameters (3)  and (4). An overall 
quantitative agreement with experiment Iins been accomplished, altliough for the spin- 
wave dispersion systematic 10% deviations have been concluded. 

Implications of the different parameter values have been extensively discussed and 
a new specific heat experirnent Iias been suggested to overcome some ambiguities. 
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